1,4-Addition of Hexafluorobut-2-yne to Co-ordinated Cyclo-octa-1,5diene: Crystal and Molecular Structure of (Acetylacetonato)aqua\{7-8- η -7,8-bis(trifluoromethyl)bicyclo[4.2.2]dec-7-ene-2,5-diyl\}rhodium(III)

By David R. Russell* and Paul A. Tucker, Department of Chemistry, University of Leicester, Leicester LE1 7RH
Crystals of the title compound (1) are monoclinic, space group $C 2 / c$. with $a=8.84(1), b=19.34(2) . c=22.61(2)$
$A, \beta=102.8(5)^{\circ}, Z=8$. The structure was refined by least-squares analysis of counter intensities to $R 0.092$ for 1591 reflexions. Mean bond lengths are: Rh-C 2.05, Rh-C (olefinic) 2.09, Rh-O (trans to C) 2.05. Rh-O (trans to olefinic bond) 2.18 , and $\mathrm{Rh}-\mathrm{OH}_{2} 2.32 \AA$. Possible intermediates to the formation of the adduct are discussed.
W_{E} have recently been interested in the reactions of acetylenes with metal-olefin complexes. In a preliminary report ${ }^{1}$ on part of this work two ways in which

(1)

Showing arbitrary crystallographic numbering
hexafluorobut-2-yne ($\mathrm{C}_{4} \mathrm{~F}_{6}$) can add to co-ordinated cyclo-octa-1,5-diene (cod) were described. We now report in full the crystal structure of an adduct (1) in which there has been 1,4 -addition of $\mathrm{C}_{4} \mathrm{~F}_{6}$ to the coordinated cod ligand. (1) Is obtained by treating the reaction product of $\mathrm{C}_{4} \mathrm{~F}_{6}$ and $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ with sodium acetylacetonate.

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{Rh} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, M=499.1$, Monoclinic, $\quad a=8.84(1), \quad b=19.34(2), \quad c=22.61(2) \quad \AA, \quad \beta=$ $102.8(5)^{\circ}, U=3770 \AA^{3}, Z=8, D_{\mathrm{c}}=1.76 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 2008 . Space group $C 2 / c$ or $C c$ (systematic absences: $h k l$ when $h+k=2 n+1$ and $h 0 l$ when $l=2 n+1$). Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=9.6 \mathrm{~cm}^{-1}$. The structure was successfully refined in $C 2 / c$.

Crystals of (1) were grown from diethyl ether-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) solutions and are commonly thin plates on $\{001\}$. Unit-cell dimensions were obtained from oscillation and Weissenberg photographs by use of $\mathrm{Cu}-\mathrm{K}_{\alpha}$ ($\lambda=1.5419 \AA$) radiation. Intensity data were collected from a crystal of dimensions ca. $0.058 \times 0.012 \times 0.003 \mathrm{~cm}$ mounted about a. The intensities of reflexions with $\sin 0 / \lambda<0.6 \AA^{-1}$ were measured for the layers $0-9 k l$ on a Stoe Weissenberg diffractometer by use of monochromatic Mo- K_{α} radiation and an ω-scan technique. Reflexions with $\sin \theta / \lambda>0.1 \AA^{-1}$ and $I>2 \sigma(I)$ were corrected for Lorentz, polarisation, and absorption effects. ${ }^{2}$

[^0]Scattering factors for the atoms were taken from ref. 3. The structure was solved by conventional heavy-atom methods and block-diagonal least-squares refinement reduced R to $0.092\left[R^{\prime}=\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma w^{2}\left|F_{\mathrm{o}}\right|=0.094\right]$ for 1591 reflexions. \dagger The weighting scheme, given by $w=$ ($\left.12.25-0.454\left|F_{0}\right|+0.01\left|F_{0}\right|^{2}\right)^{-1}$, was introduced in order that $w \Delta^{2}$ be approximately independent of $\left|F_{\mathrm{o}}\right|$. Hydrogen atoms were not located or included in the structure-factor calculations but a correction for the anomalous dispersion ${ }^{4}$ due to rhodium was included. Refined temperature factors were anisotropic for rhodium and fluorine atoms and isotropic for carbon and oxygen atoms. The maximum shift in the final cycle was 0.1σ. A difference-Fourier synthesis calculated at the end of the refinement shows no maxima or minima with an absolute value $>0.3 \mathrm{e}^{-3}$.

Final atomic co-ordinates and thermal parameters are listed in Table 1. The molecular geometry and atom numbering are shown in Figure 1. Observed and calculated

Figure 1 Molecular geometry and atom numbering. Thermal ellipsoids are scaled to 50% probability
structure factors are listed in Supplementary Publication No. SUP 21610 (8 pp., 1 microfiche). \ddagger

DISCUSSION

Bond lengths and angles for the title compound are listed in Tables 2 and 3 respectively. The $\mathrm{Rh}-\mathrm{O}$ (acac)

[^1]bond lengths are (acac = acetylacetonato) $\mathrm{Rh}-\mathrm{O}(2)$, 2.05 tran sto the olefinic bond $[\mathrm{C}(14)=\mathrm{C}(15)]$, and $\mathrm{Rh}-\mathrm{O}(1)$, $2.18 \AA$ trans to $\mathrm{C}(6)$ reflecting the larger trans-influence of a σ-bonded carbon atom. The $\mathrm{Rh}-\mathrm{O}(2)$ bond length

The distance from Rh to the midpoint of the olefinic bond $[\mathrm{C}(14)=\mathrm{C}(15)]$ is $1.97 \AA$ which falls between the equivalent distances of 1.885 to $\mathrm{C}_{2} \mathrm{~F}_{4}$ and $2.074 \AA$ to $\mathrm{C}_{2} \mathrm{H}_{4}$ in $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Rh}(\mathrm{acac})\right] .6$ The $\mathrm{C}(14)=\mathrm{C}(15)$ bond

Table 1
Final atomic co-ordinates and thermal parameters, with estimated standard deviations in parentheses

[^2]compares well with the mean $\mathrm{Rh}-\mathrm{O}$ (acac) bond length in the Rh^{I} complexes $[(\operatorname{cod}) \mathrm{Rh}(\mathrm{acac})]^{5}(2.060 \AA)$ and $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Rh}(\mathrm{acac})\right]^{6}(2.042 \AA)$. The $\mathrm{Rh}-\mathrm{OH}_{2}$ bond is

Table 2
Bond lengths (\AA), with estimated standard deviations in parentheses

$\mathrm{Rh}-\mathrm{O}(1)$	2.18(1)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.56(3)
$\mathrm{Rh}-\mathrm{O}(2)$	2.05(1)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.52(4)
Rh-O(3)	2.32(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.57(4)$
		$\mathrm{C}(12)-\mathrm{C}(13)$	1.55(4)
$\mathrm{Rh}-\mathrm{C}(6)$	2.04(2)	$\mathrm{C}(13)-\mathrm{C}(6)$	$1.54(3)$
$\mathrm{Rh}-\mathrm{C}(9)$	2.05(2)		
		$\mathrm{C}(10)-\mathrm{C}(14)$	1.58(3)
$\mathrm{Rh}-\mathrm{C}(14)$	2.09(2)	$\mathrm{C}(13)-\mathrm{C}(15)$	1.48 (3)
$\mathrm{Rh}-\mathrm{C}(15)$	2.09(2)	$\mathrm{C}(14)-\mathrm{C}(16)$ $\mathrm{C}(15)-\mathrm{C}(17)$	$1.52(3)$ $1.47(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	1.26(3)		
$\mathrm{O}(2)-\mathrm{C}(4)$	1.25 (3)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.37(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.52(4)$		
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.53(4)$	$\mathrm{C}(16)-\mathrm{F}(1)$	$1.30(3)$
$\mathrm{C}(1)-\mathrm{C}(3)$	1.43(3)	$\mathrm{C}(16)-\mathrm{F}(2)$	1.33(3)
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.42(3)$	$\mathrm{C}(16)-\mathrm{F}(3)$	$1.32(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.53(3)	$\mathrm{C}(17)-\mathrm{F}(4)$	$1.33(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.53(3)	$\mathrm{C}(17)-\mathrm{F}(5)$	1.30(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.55(3)	$\mathrm{C}(17)-\mathrm{F}(6)$	1.34(3)

rather long when compared with those in $\left[\mathrm{Rh}\left(\mathrm{AsMe}_{3}\right)_{2^{-}}\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CF}_{3}\right)\right\}_{4} \mathrm{Cl}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[2.24 \AA\right.$ trans to $\mathrm{C}\left(\mathrm{CF}_{3}\right)$ (ref. 7)], $\mathrm{Cs}_{2}\left[\mathrm{RhCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ [2.10 \AA trans to Cl (ref. 8)], and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{RhCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[2.03 \AA\right.$ trans to OH_{2} (ref. 9$\left.)\right]$.

The $\mathrm{Rh}-\mathrm{C}(6)$ and $\mathrm{Rh}-\mathrm{C}(9)$ bonds [2.04(2) and 2.05(2) \AA respectively], are equal despite differing trans-ligands.

[^3]length ($1.37 \AA$) shows the expected lengthening of a double bond on co-ordination to the metal and the olefin geometry is non-planar as illustrated in Figure 2.
The geometry of the acac ligand is normal and the bond lengths and angles in the original cyclo-octadiene

Table 3
Bond angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{O}(1)$	86.5(5)	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(16)$	110(2)
$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{O}(3)$	85.5(5)	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(14)$	121(2)
$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{C}(6)$	90.7(6)	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(15)$	117(2)
$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{C}(9)$	88.1 (7)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(17)$	121(2)
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{C}(3)$	83.3(5)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)$	130(2)
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{C}(9)$	99.3(7)		
$\mathrm{O}(3)-\mathrm{Rh}-\mathrm{C}(6)$	95.3(6)	$\mathrm{Rh}-\mathrm{C}(6)-\mathrm{C}(13)$	97(1)
$\mathrm{C}(6)-\mathrm{Rh}-\mathrm{C}(9)$	81.7(8)	$\mathrm{Rh}-\mathrm{C}(9)-\mathrm{C}(10)$	$97(1)$
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{C}(6)$	177.0(7)	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(15)$	$98(2)$
$\mathrm{O}(3)-\mathrm{Rh}-\mathrm{C}(9)$	172.9(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	96(2)
		$\mathrm{Rh}-\mathrm{C}(6)-\mathrm{C}(7)$	113(1)
$\mathrm{Rh}-\mathrm{O}(\mathbf{1})-\mathrm{C}(1)$	125(1)	$\mathrm{Rh}-\mathrm{C}(9)-\mathrm{C}(8)$	106(1)
$\mathrm{Rh}-\mathrm{O}(2)-\mathrm{C}(4)$	124(1)		
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	125(2)	$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)$	120(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	117(2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	107(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	124(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	117(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	119(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	113(2)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	115(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	123(2)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	128(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	114(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	117(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	115(2)
		$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	118(2)
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(17)$	114(2)		

fragment are mostly unexceptional. The angles Rh^{-} $\mathrm{C}(6)-\mathrm{C}(13), \mathrm{Rh}-\mathrm{C}(9)-\mathrm{C}(10), \mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(15)$, and $\mathrm{C}(9)-$

[^4]$\mathrm{C}(10)-\mathrm{C}(14)$ are smaller than might be expected presumably in order to bring the olefin close to the metal.

The title compound is isolated from the reaction of sodium acetylacetonate with the adduct obtained by treating $\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}\right.$ with $\mathrm{C}_{4} \mathrm{~F}_{6}$. This adduct * is likely

Figure 2 Geometry of the co-ordinated olefinic grouping. Line p passes through the rhodium atom and the midpoint of the $C(14)=C(15)$ bond. The normals to planes $C(13), C(15)$, $C(17)$, and $\mathrm{C}(10), \mathrm{C}(14), \mathrm{C}(16)$ intersect at point q. The complements of the angles between p and the normals to planes γ and s are shown; these complementary angles would be 90° in a planar olefin
to be very similar to the tetrameric complex isolated from the reaction of $\mathrm{C}_{4} \mathrm{~F}_{6}$ with $\left[\mathrm{Rh}(\right.$ norb $) \mathrm{Cl}_{2}{ }_{2}^{10}[(2)$ norb $=$ norbornadiene]. It is of interest to consider whether the available structural information can give any clue to the mechanism of the 1,4 -addition.

(2)

The 1,4 -addition of a dienophile to unco-ordinated cod is unknown and, in consequence, it is possible that the metal holds the ligand in a favourable conformation for addition to occur. However, both free and co-ordinated cod adopt the twisted boat conformation. In the free molecule the $2 \cdots 5$-distances are $3.05 \AA^{11}$ which are reduced on co-ordination to $2.74 \AA .{ }^{5}$ This contraction may assist a concerted addition to co-ordinated cod, but the effect is unlikely to be of major significance as the equivalent distances in free and co-ordinated norbornadiene are nearly equal [2.369 (ref. 12) and $2.383 \AA$ (ref. 13) respectively], and although homo-Diels-Alder addition of $\mathrm{C}_{4} \mathrm{~F}_{6}$ is reported with both free and co-ordinated

[^5]norbornadiene, reaction occurs far more easily when the diene is co-ordinated. ${ }^{10}$

(3)

(4)

(5)

Figure 3 Molecular packing projected on [011]
It seems likely that the reaction proceeds via an acctylene complex. Support for this supposition is the isolation of the complex (3) from the room-temperature

[^6]reaction of $\mathrm{C}_{4} \mathrm{~F}_{6}$ with $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} .{ }^{14}$ 1,4-Addition may then occur by a concerted process such as indicated (4), \dagger or in a stepwise fashion. Present evidence suggests the latter, firstly because the facile 1,3 -addition of hexa-fluorobut-2-yne to co-ordinated butadiene has been shown to proceed stepwise, ${ }^{15}$ and secondly if $\left[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}_{2}\right]$ is allowed to react with $\mathrm{C}_{4} \mathrm{~F}_{6}$ at $90{ }^{\circ} \mathrm{C}$ the complex (5) is isolated. ${ }^{14}$

The reaction of $\mathrm{C}_{4} \mathrm{~F}_{6}$ with $[\mathrm{Rh}(\operatorname{cod})(\mathrm{acac})]^{16}$ or $[\operatorname{Ir}(\mathrm{cod})(\mathrm{acac})]^{1}$ does not produce a 1,4 -addition product, presumably because the initial reaction involves $1,4-$ addition of $\mathrm{C}_{4} \mathrm{~F}_{6}$ across the metal-acac ring to produce a five-co-ordinated intermediate in which the metal formally achieves eighteen electrons in its valence shell.
\dagger The L in (4) is a neutral ligand, such as a solvent molecule or bridging chlorine, which completes the co-ordination sphere of RhII.

14 D. Clarke, R. D. W. Kemmitt, D. R. Russell, and P. A. Tucker, J. Organometallic Chem., 1975, 93, C37.

Formation of a second acetylene complex is thus unlikely and the reaction follows a different course.

The molecular packing is illustrated in Figure 3. Pairs of molecules appear to be held together by weak hydrogen bonds to a water molecule, $\mathrm{O}(4)$, on the two-fold axis. The $\mathrm{O}(1) \cdots \mathrm{O}(4)$ and $\mathrm{O}(3) \cdots \mathrm{O}(4)$ distances are 2.92 and $2.91 \AA$ respectively, but since the structure determination is not of sufficient accuracy to enable location of the hydrogen atoms the precise nature of the hydrogen bonding remains uncertain.

We thank Dr. A. C. Jarvis for providing a sample of the complex, the University of Leicester Computing Laboratory for facilities, and Johnson, Matthey and Co. Ltd. for the loan of chemicals.
[5/1368 Received, 11th Jutly, 1975]
${ }^{15}$ R. Davis, M. Green, and R. P. Hughes, J.C.S. Chem. Comm., 1975, 405.
${ }^{16}$ 'D. M. Barlex, J. A. Evans, R. D. W. Kemmitt, and D. R. Russell, Chem. Comm., 1971, 331.

[^0]: \dagger Differences between this paper and the preliminary communication are due to inclusion of a further 203 reflexions, with $2 \sigma(I)<I<3 \sigma(I)$, in the refinement.
 \ddagger See Notice to Authors No. 7, in J.C.S. Dalton, 1975, Index issue. (Ttems less than 10 pp . are supplied as full-size copies.)

[^1]: ${ }^{1}$ A. C. Jarvis, R. D. W. Kemmitt, B. Y. Kimura, D. R. Russell, and P. A. Tucker, J.C.S. Chem. Comm., 1974, 797.
 ${ }^{2}$ J. de Meulenaer and H. Tompa, Acta Cry'st., 1965, 19, 1014; N. W. Alcock, ibid., 1969, A25, 518.
 ${ }^{3}$ D. T. Cromer and J. T. Waber, Acta Cyyst., 1965, 18, 104.
 ${ }^{4}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^2]: * Anisotropic temperature factor in the form: $\exp \left[-2 \pi\left(h^{2} a^{* 2} B_{11}+k^{2} b^{* 2} B_{22}+l^{2} c^{* 2} B_{33}+2 h k a^{*} b^{*} B_{12}+2 h l a^{*} c^{*} B_{13}+\right.\right.$ $\left.\left.2 k l b^{*} c^{*} B_{23}\right)\right]$. † Parameters fixed by symmetry.

[^3]: ${ }^{5}$ P. A. Tucker, W. Scutcher, and D. R. Russell, Acta Cryst., 1975, B31, 592
 ${ }^{6}$ J. A. Evans, D. R. Russell, and P. A. Tucker, to be published.
 ? J. T. Mague, J. Amer. Chem. Soc., 1971, 98, 3550.

[^4]: ${ }^{8}$ C. K. Thomas and J. A. Stanko, J. Co-ordination Chem.
 1973, 2, 231.
 ${ }_{9}$ C. K. Thomas and J. A. Stanko, J. Co-ordination Chem., 1973, 2, 211.

[^5]: * There are at least two crystal modifications: (i) orthorhombic, $a=33.53, b=25.37, c=14.09 \AA$, space group Pccn, crystals of which appear to decompose on irradiation; and (ii) monoclinic, $a=20.04, \quad b=18.33, c=18.03 \AA, \beta=76.2^{\circ}$, space group $P 2_{1} / n$, the limited data set $\left(\mathrm{Cu}-K_{\alpha}, \theta_{\text {max. }} 60^{\circ}\right)$ of which has not yielded a solution.

[^6]: 10 J. A. Evans, R. D. W. Kemmitt, B. Y. Kimura, and D. R. Russell, J.C.S. Chem. Comm., 1972, 509.

 11 L. Hedberg and K. Hedberg, Abstracts of Papers, National Meeting Amer. Cryst. Assocn, Bozeman, Montana, 1964, 78.
 ${ }^{12}$ V. Schomaker, unpublished results, but see J. Amer. Chem. Soc., 1960, 82, 5450.
 ${ }_{13}$ N. C. Baenziger, J. R. Doyle, and C. Carpenter, Acta Cryst., 1961, 14, 303.

